Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.643
Filtrar
1.
Int Immunopharmacol ; 123: 110677, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37523973

RESUMO

Eucommia ulmoides Oliv (EUO) is a traditional therapeutic drug that tonifies the liver and kidney and may improve depression. However, the mechanism of action of the main component, aucubin (AU), is unknown. To study the therapeutic effect of AU, we constructed a chronic unpredictable mild stress (CUMS) depression model in mice. Depression-like behaviors, pathological damage, hormonal changes, inflammation, intranuclear expression of glucocorticoidreceptor (GR), and hippocampal protein expression were assessed. Immunofluorescence staining of the hippocampus showed that CUMS decreased neuronal regeneration, and axons were observed to be reduced and broken. Intracellular GR expression decreased in the hippocampus and hypothalamus, and serum levels of stress hormones increased. Furthermore, molecular changes indicative of pyroptosis were observed. AU administration reversed these changes and significantly improved the depression-like behavior induced by CUMS. Our results suggested that AU improves depression by promoting the intranuclear expression of GR and inhibiting nuclear factor-kappa B-mediated inflammatory activation-driven cell pyroptosis.


Assuntos
Transtorno Depressivo , NF-kappa B , Animais , Camundongos , Depressão/tratamento farmacológico , Depressão/metabolismo , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/metabolismo , Modelos Animais de Doenças , Hipocampo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Receptores de Glucocorticoides/efeitos dos fármacos
2.
Biomolecules ; 13(6)2023 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-37371558

RESUMO

Over several decades, excess glucocorticoids (GCs) of endogenous or exogenous origin have been recognized to significantly inhibit collagen synthesis and accelerate skin aging. However, little is known regarding their molecular mechanisms. We hypothesized that the action of GCs on collagen production is at least partially through the glucocorticoid receptor (GR) and its target genes, and therefore aimed to identify GR target genes that potentially inhibit collagen synthesis in Hs68 human dermal fibroblasts. We first confirmed that dexamethasone, a synthetic GC, induced canonical GR signaling in dermal fibroblasts. We then collected 108 candidates for GR target genes reported in previous studies on GR target genes and verified that 17 genes were transcriptionally upregulated in dexamethasone-treated dermal fibroblasts. Subsequently, by individual knockdown of the 17 genes, we identified that six genes, AT-rich interaction domain 5B, FK506 binding protein 5, lysyl oxidase, methylenetetrahydrofolate dehydrogenase (NADP + dependent) 2, zinc finger protein 36, and zinc fingers and homeoboxes 3, are potentially involved in GC-mediated inhibition of collagen synthesis. The present study sheds light on the molecular mechanisms of GC-mediated skin aging and provides a basis for further research on the biological characteristics of individual GR target genes.


Assuntos
Colágeno , Derme , Fibroblastos , Glucocorticoides , Receptores de Glucocorticoides , Humanos , Colágeno/biossíntese , Derme/citologia , Derme/efeitos dos fármacos , Derme/metabolismo , Dexametasona/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glucocorticoides/farmacologia , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
3.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563330

RESUMO

The glucocorticoid receptor (GR) at the blood−brain barrier (BBB) is involved in the pathogenesis of drug-resistant epilepsy with focal cortical dysplasia (FCD); however, the roles of GR isoforms GRα and GRß in the dysplastic brain have not been revealed. We utilized dysplastic/epileptic and non-dysplastic brain tissue from patients who underwent resective epilepsy surgery to identify the GRα and GRß levels, subcellular localization, and cellular specificity. BBB endothelial cells isolated from the dysplastic brain tissue (EPI-ECs) were used to decipher the key BBB proteins related to drug regulation and BBB integrity compared to control and transfected GRß-overexpressed BBB endothelial cells. GRß was upregulated in dysplastic compared to non-dysplastic tissues, and an imbalance of the GRα/GRß ratio was significant in females vs. males and in patients > 45 years old. In EPI-ECs, the subcellular localization and expression patterns of GRß, Hsp90, CYP3A4, and CYP2C9 were consistent with GRß+ brain endothelial cells. Active matrix metalloproteinase levels and activity increased, whereas claudin-5 levels decreased in both EPI-ECs and GRß+ endothelial cells. In conclusion, the GRß has a major effect on dysplastic BBB functional proteins and is age and gender-dependent, suggesting a critical role of brain GRß in dysplasia as a potential biomarker and therapeutic target in epilepsy.


Assuntos
Epilepsia , Receptores de Glucocorticoides , Barreira Hematoencefálica , Encéfalo/metabolismo , Encéfalo/patologia , Células Endoteliais/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Feminino , Glucocorticoides/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo
4.
J Nat Prod ; 85(1): 237-247, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34935393

RESUMO

Baicalein is a flavonoid extracted from the root of Scutellaria baicalensis (Chinese skullcap) and is consumed as part of this botanical dietary supplement to reduce oxidative stress, pain, and inflammation. We previously reported that baicalein can also modify receptor signaling through the progesterone receptor (PR) and glucocorticoid receptor (GR) in vitro, which is interesting due to the well-established roles of both PR and GR in reducing inflammation. To understand the effects of baicalein on PR and GR signaling in vivo in the uterus, ovariectomized CD-1 mice were treated with DMSO, progesterone (P4), baicalein, P4 with baicalein, and P4 with RU486, a PR antagonist, for a week. The uteri were collected for histology and RNA sequencing. Our results showed that baicalein attenuated the antiproliferative effect of P4 on luminal epithelium as well as on the PR target genes HAND2 and ZBTB16. Baicalein did not change levels of PR or GR RNA or protein in the uterus. RNA sequencing data indicated that many transcripts significantly altered by baicalein were regulated in the opposite direction by P4. Similarly, a large portion of GO/KEGG terms and GSEA gene sets were altered in the opposite direction by baicalein as compared to P4 treatment. Treatment of baicalein did not change body weight, organ weight, or blood glucose level. In summary, baicalein functioned as a PR antagonist in vivo and therefore may oppose P4 action under certain conditions such as uterine hyperplasia, fibroids, and uterine cancers.


Assuntos
Flavanonas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Progesterona/metabolismo , Receptores de Progesterona/genética , Útero/efeitos dos fármacos , Animais , Feminino , Camundongos , Ovariectomia , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Progesterona/antagonistas & inibidores , Análise de Sequência de RNA/métodos , Útero/metabolismo
5.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768949

RESUMO

Mild hypercortisolism (mHC) is defined as an excessive cortisol secretion, without the classical manifestations of clinically overt Cushing's syndrome. This condition increases the risk of bone fragility, neuropsychological alterations, hypertension, diabetes, cardiovascular events and mortality. At variance with Cushing's syndrome, mHC is not rare, with it estimated to be present in up to 2% of individuals older than 60 years, with higher prevalence (up to 10%) in individuals with uncontrolled hypertension and/or diabetes or with unexplainable bone fragility. Measuring cortisol after a 1 mg overnight dexamethasone suppression test is the first-line test for searching for mHC, and the degree of cortisol suppression is associated with the presence of cortisol-related consequences and mortality. Among the additional tests used for diagnosing mHC in doubtful cases, the basal morning plasma adrenocorticotroph hormone, 24-h urinary free cortisol and/or late-night salivary cortisol could be measured, particularly in patients with possible cortisol-related complications, such as hypertension and diabetes. Surgery is considered as a possible therapeutic option in patients with munilateral adrenal incidentalomas and mHC since it improves diabetes and hypertension and reduces the fracture risk. In patients with mHC and bilateral adrenal adenomas, in whom surgery would lead to persistent hypocortisolism, and in patients refusing surgery or in whom surgery is not feasible, medical therapy is needed. Currently, promising though scarce data have been provided on the possible use of pituitary-directed agents, such as the multi-ligand somatostatin analog pasireotide or the dopamine agonist cabergoline for the-nowadays-rare patients with pituitary mHC. In the more frequently adrenal mHC, encouraging data are available for metyrapone, a steroidogenesis inhibitor acting mainly against the adrenal 11-ßhydroxylase, while data on osilodrostat and levoketoconazole, other new steroidogenesis inhibitors, are still needed in patients with mHC. Finally, on the basis of promising data with mifepristone, a non-selective glucocorticoid receptor antagonist, in patients with mild cortisol hypersecretion, a randomized placebo-controlled study is ongoing for assessing the efficacy and safety of relacorilant, a selective glucocorticoid receptor antagonist, for patients with mild adrenal hypercortisolism and diabetes mellitus/impaired glucose tolerance and/or uncontrolled systolic hypertension.


Assuntos
Síndrome de Cushing/diagnóstico , Síndrome de Cushing/terapia , Neoplasias das Glândulas Suprarrenais/complicações , Síndrome de Cushing/complicações , Desenvolvimento de Medicamentos , Humanos , Hidrocortisona/metabolismo , Modelos Biológicos , Receptores Dopaminérgicos/efeitos dos fármacos , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Somatostatina/efeitos dos fármacos , Esteroides/biossíntese
6.
Behav Pharmacol ; 32(8): 640-651, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34657071

RESUMO

Stigmasterol is a phytosterol that presents pharmacologic properties. However, its anti-inflammatory mechanism and antinociceptive effect are not yet elucidated. Thus, the present study aimed to investigate the anti-inflammatory and antinociceptive activities of stigmasterol and its mechanism of action in mice. The antinociceptive activity was assessed by the acetic acid-induced writhing test, formalin test, and hot plate test. The anti-inflammatory activity was investigated by carrageenan-induced peritonitis and paw edema induced by arachidonic acid. The involvement of glucocorticoid receptors in the mechanism of stigmasterol anti-inflammatory action was investigated by molecular docking, also by pretreating mice with RU-486 (glucocorticoid receptor antagonist) in the acetic acid-induced writhing test. Mice motor coordination was evaluated by the rota-rod test and the locomotor activity by the open field test. The lowest effective dose of stigmasterol was standardized at 10 mg/kg (p.o.). It prevented abdominal writhes and paw licking, but it did not increase the latency time in the hot plate test, suggesting that stigmasterol does not show an antinociceptive effect in response to a thermal stimulus. Stigmasterol decreased leukocyte infiltration in peritonitis assay and reduced paw edema elicited by arachidonic acid. Molecular docking suggested that stigmasterol interacts with the glucocorticoid receptor. Also, RU-486 prevented the effect of stigmasterol in the acetic-acid abdominal writhing test, which might indicate the contribution of glucocorticoid receptors in the mechanism of stigmasterol action. Stigmasterol reduced the number of crossings but did not impair mice's motor coordination. Our results show that stigmasterol presents anti-inflammatory effects probably mediated by glucocorticoid receptors.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Peritonite/tratamento farmacológico , Estigmasterol/farmacologia , Analgésicos/administração & dosagem , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Edema/tratamento farmacológico , Edema/patologia , Inflamação/patologia , Masculino , Camundongos , Mifepristona/farmacologia , Simulação de Acoplamento Molecular , Dor/tratamento farmacológico , Peritonite/patologia , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Estigmasterol/administração & dosagem
7.
Food Chem Toxicol ; 157: 112539, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34500009

RESUMO

Although the medical application of betulin has been presented in previous studies, the potential mechanism of the anti-inflammatory action of betulin should be further investigated. This work aims to confirm the hypothesis that betulin has dexamethasone-like anti-inflammatory action through glucocorticoid receptor (GR)-mediated pathway. Firstly, the binding ability of betulin with GR was measured by a fluorescence polarization-based competitive binding assay, with the IC50 value of 79.18 ± 0.30 mM. Betulin could bind to GR and then induced GR nuclear translocation, but lacked GR transcriptional activity in HeLa cells. Hence, betulin exhibited the potential to be a dissociated modulator for GR, with the loss of glucocorticoid response element (GRE)-associated side effects. In addition, betulin downregulated GRE-driven protein expression of G6P involved in gluconeogenesis, namely side effect. The results of pro-inflammatory cytokines analysis showed that betulin exerted anti-inflammatory action in vitro. Both of the hydrophobic and hydrogen-bonding interactions stabilized the binding between betulin and GR during the simulation process. In conclusion, betulin might be a potential dissociated GR modulator with a reduced side effect profile yet keeping its anti-inflammatory action.


Assuntos
Anti-Inflamatórios/farmacologia , Receptores de Glucocorticoides/efeitos dos fármacos , Triterpenos/farmacologia , Sítios de Ligação , Regulação para Baixo , Gluconeogênese/efeitos dos fármacos , Células HeLa/efeitos dos fármacos , Células Hep G2/efeitos dos fármacos , Humanos , Interleucina-1beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células U937/efeitos dos fármacos
8.
J Clin Psychopharmacol ; 41(6): 632-637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34369902

RESUMO

PURPOSE: Antipsychotic medications, including olanzapine, are associated with substantial weight gain and metabolic disturbances. We sought to determine whether coadministration of miricorilant, a selective glucocorticoid receptor modulator, with olanzapine can ameliorate these effects. METHODS: Sixty-six healthy men were enrolled in a 2-week, randomized, double-blind, placebo-controlled trial. The primary objective was to evaluate changes in body weight after 14 days coadministration of olanzapine (10 mg) + miricorilant (600 mg) compared with olanzapine (10 mg) + placebo. Secondary objectives included evaluating (a) the safety and tolerability of the combination; (b) the effects of the combination on glucose, insulin, insulin resistance, and triglycerides; and (c) the impact of the combination on hepatic enzymes. RESULTS: Subjects administered olanzapine + miricorilant gained less weight than subjects administered olanzapine + placebo (mean weight gain on day 15, 3.91 kg vs 4.98 kg; difference between groups, -1.07 kg; 95% confidence interval, -1.94 to -0.19; P = 0.017]). Compared with the placebo group, coadministration of miricorilant with olanzapine was associated with smaller increases in insulin (difference, -3.74 mIU/L; P = 0.007), homeostatic model assessment of insulin resistance (difference, -0.47; P = 0.007), triglycerides (difference, -0.29 mmol/L; P = 0.057), aspartate aminotransferase (difference, -32.24 IU/L; P = 0.009), and alanine aminotransferase (difference, -49.99 IU/L; P = 0.030). CONCLUSIONS: Miricorilant may provide a promising option for ameliorating the detrimental effects of olanzapine, and investigation of this medication in patients affected by antipsychotic-induced weight gain is warranted. Two phase 2 studies of miricorilant in patients with recent and long-standing antipsychotic-induced weight gain are currently in progress.


Assuntos
Antipsicóticos/farmacologia , Olanzapina/farmacologia , Receptores de Glucocorticoides/efeitos dos fármacos , Timina/análogos & derivados , Aumento de Peso/efeitos dos fármacos , Adulto , Antipsicóticos/administração & dosagem , Antipsicóticos/efeitos adversos , Método Duplo-Cego , Quimioterapia Combinada , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Olanzapina/administração & dosagem , Olanzapina/efeitos adversos , Estudo de Prova de Conceito , Timina/administração & dosagem , Timina/efeitos adversos , Timina/farmacologia , Adulto Jovem
9.
Nat Commun ; 12(1): 4960, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400618

RESUMO

Agonists of glucocorticoid receptor (GR) are frequently given to cancer patients with platinum-containing chemotherapy to reduce inflammation, but how GR influences tumor growth in response to platinum-based chemotherapy such as cisplatin through inflammation-independent signaling remains largely unclear. Combined genomics and transcription factor profiling reveal that MAST1, a critical platinum resistance factor that reprograms the MAPK pathway, is upregulated upon cisplatin exposure through activated transcription factor GR. Mechanistically, cisplatin binds to C622 in GR and recruits GR to the nucleus for its activation, which induces MAST1 expression and consequently reactivates MEK signaling. GR nuclear translocation and MAST1 upregulation coordinately occur in patient tumors collected after platinum treatment, and align with patient treatment resistance. Co-treatment with dexamethasone and cisplatin restores cisplatin-resistant tumor growth, whereas addition of the MAST1 inhibitor lestaurtinib abrogates tumor growth while preserving the inhibitory effect of dexamethasone on inflammation in vivo. These findings not only provide insights into the underlying mechanism of GR in cisplatin resistance but also offer an effective alternative therapeutic strategy to improve the clinical outcome of patients receiving platinum-based chemotherapy with GR agonists.


Assuntos
Cisplatino/farmacologia , Proteínas Associadas aos Microtúbulos/metabolismo , Platina/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular , Sobrevivência Celular , Citocinas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/genética , Receptores de Glucocorticoides/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Commun Biol ; 4(1): 661, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34079046

RESUMO

Detecting changes in the activity of a transcription factor (TF) in response to a perturbation provides insights into the underlying cellular process. Transcription Factor Enrichment Analysis (TFEA) is a robust and reliable computational method that detects positional motif enrichment associated with changes in transcription observed in response to a perturbation. TFEA detects positional motif enrichment within a list of ranked regions of interest (ROIs), typically sites of RNA polymerase initiation inferred from regulatory data such as nascent transcription. Therefore, we also introduce muMerge, a statistically principled method of generating a consensus list of ROIs from multiple replicates and conditions. TFEA is broadly applicable to data that informs on transcriptional regulation including nascent transcription (eg. PRO-Seq), CAGE, histone ChIP-Seq, and accessibility data (e.g., ATAC-Seq). TFEA not only identifies the key regulators responding to a perturbation, but also temporally unravels regulatory networks with time series data. Consequently, TFEA serves as a hypothesis-generating tool that provides an easy, rigorous, and cost-effective means to broadly assess TF activity yielding new biological insights.


Assuntos
Fatores de Transcrição/metabolismo , Mama/citologia , Mama/metabolismo , Linhagem Celular , Sequenciamento de Cromatina por Imunoprecipitação/estatística & dados numéricos , Biologia Computacional/métodos , Simulação por Computador , Dexametasona/farmacologia , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Técnicas Genéticas/estatística & dados numéricos , Células HCT116 , Humanos , Imidazóis/farmacologia , Piperazinas/farmacologia , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
Neurobiol Dis ; 156: 105422, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34126164

RESUMO

Synthetic glucocorticoids (sGCs) such as dexamethasone (DEX), while used to mitigate inflammation and disease progression in premature infants with severe bronchopulmonary dysplasia (BPD), are also associated with significant adverse neurologic effects such as reductions in myelination and abnormalities in neuroanatomical development. Ciclesonide (CIC) is a sGC prodrug approved for asthma treatment that exhibits limited systemic side effects. Carboxylesterases enriched in the lower airways convert CIC to the glucocorticoid receptor (GR) agonist des-CIC. We therefore examined whether CIC would likewise activate GR in neonatal lung but have limited adverse extra-pulmonary effects, particularly in the developing brain. Neonatal rats were administered subcutaneous injections of CIC, DEX or vehicle from postnatal days 1-5 (PND1-PND5). Systemic effects linked to DEX exposure, including reduced body and brain weight, were not observed in CIC treated neonates. Furthermore, CIC did not trigger the long-lasting reduction in myelin basic protein expression in the cerebral cortex nor cerebellar size caused by neonatal DEX exposure. Conversely, DEX and CIC were both effective at inducing the expression of select GR target genes in neonatal lung, including those implicated in lung-protective and anti-inflammatory effects. Thus, CIC is a promising, novel candidate drug to treat or prevent BPD in neonates given its activation of GR in neonatal lung and limited adverse neurodevelopmental effects. Furthermore, since sGCs such as DEX administered to pregnant women in pre-term labor can adversely affect fetal brain development, the neurological-sparing properties of CIC, make it an attractive alternative for DEX to treat pregnant women severely ill with respiratory illness, such as with asthma exacerbations or COVID-19 infections.


Assuntos
Cerebelo/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Glucocorticoides , Pulmão/efeitos dos fármacos , Pregnenodionas/farmacologia , Pró-Fármacos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Anti-Inflamatórios/farmacologia , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Dexametasona/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Básica da Mielina/biossíntese , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
12.
Behav Brain Res ; 408: 113295, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33839161

RESUMO

AIMS: Considering that serotoninergic agents attenuate symptoms of anxiety and are used to treat depression, we investigated whether subchronic treatment with imipramine, a serotonin/noradrenaline reuptake inhibitor, would prevent the anxiogenic-like behaviour induced by acute and/or chronic ethanol withdrawal. We also investigated whether those changes were related to the disfunctioning of hypothalamic-pituitary-adrenal (HPA) axis and serotonergic neurotransmission. MAIN METHODS: 264 Male Wistar rats were treated with ethanol 6% (vol./vol.) for 21 days. Acute ethanol withdrawal was induced by abrupt discontinuation of treatment and sustained for 48 h. Protracted abstinence was sustained for an additional period of 21 days. Behavioural tests included the Elevated Plus Maze (EPM) or Light/Dark Box (LDB) after acute abstinence, and the Forced Swim Test (FST) after protracted abstinence. Imipramine (15 mg/kg, i.p.) was administered 24, 19 and 1 h before EPM or LDB tests. KEY FINDINGS: Acute abstinence decreased exploration of the open arms of the EPM, without changing exploration of LDB. Additionally, chronic abstinent rats displayed more time immobile in the FST, when compared to control animals. These effects were attenuated by imipramine treatment, without changing basal response. Imipramine prevented protracted abstinence -induced decrease in glucocorticoid receptor (GR) and serotonin transporter (SERT) expression in the dorsal hippocampus. SIGNIFICANCE: Our findings indicate that chronic ethanol withdrawal affects the hippocampal serotonergic system by decreasing serotonin transporter expression. It also disturbs the HPA axis functioning through an imbalance on GR and mineralocorticoid (MR) expression.


Assuntos
Abstinência de Álcool , Ansiedade , Comportamento Animal , Depressão , Hipocampo , Proteínas de Ligação a RNA , Receptores de Glucocorticoides , Animais , Ansiedade/tratamento farmacológico , Ansiedade/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Depressão/tratamento farmacológico , Depressão/fisiopatologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Imipramina , Masculino , Proteínas de Ligação a RNA/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Wistar , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo
13.
Neuropharmacology ; 188: 108510, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33647278

RESUMO

Alcohol use disorder (AUD) is associated with the dysregulation of brain stress and reward systems, including glucocorticoid receptors (GRs). The mixed glucocorticoid/progesterone receptor antagonist mifepristone and selective GR antagonist CORT113176 have been shown to selectively reduce alcohol consumption in alcohol-dependent rats. Mifepristone has also been shown to decrease alcohol consumption and craving for alcohol in humans with AUD. The present study tested the effects of the GR modulators CORT118335, CORT122928, CORT108297, and CORT125134 on alcohol self-administration in nondependent (air-exposed) and alcohol-dependent (alcohol vapor-exposed) adult male rats. Different GR modulators recruit different GR-associated transcriptional cofactors. Thus, we hypothesized that these GR modulators would vary in their effects on alcohol drinking. CORT118335, CORT122928, and CORT125134 significantly reduced alcohol self-administration in both alcohol-dependent and nondependent rats. CORT108297 had no effect on alcohol self-administration in either group. The present results support the potential of GR modulators for the development of treatments for AUD. Future studies that characterize genomic and nongenomic effects of these GR modulators will elucidate potential molecular mechanisms that underlie alcohol drinking in alcohol-dependent and nondependent states.


Assuntos
Compostos Aza/farmacologia , Etanol/administração & dosagem , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Isoquinolinas/farmacologia , Mifepristona/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Receptores de Glucocorticoides/efeitos dos fármacos , Autoadministração , Timina/análogos & derivados , Animais , Masculino , Ratos , Ratos Wistar , Timina/farmacologia
14.
Brain Res ; 1751: 147190, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33152342

RESUMO

Dysregulation of the stress-induced activation of the hypothalamic-pituitary-adrenocortical axis can result in disease. Bidirectional communication exists between the brain and the gut, and alterations in these interactions appear to be involved in stress regulation and in the pathogenesis of neuropsychiatric diseases, such as depression. Serotonin (5HT) plays a crucial role in the functions of these two major organs but its direct influence under stress conditions remains unclear. To investigate the role of neuronal 5HT on chronic stress responses and its influence on the gut microbiome, mice lacking the gene for tryptophan hydroxylase-2 were treated with the stress hormone corticosterone (CORT) for 21 days. The intake of fluid and food, as well as body weights were recorded daily. CORT levels, expression of glucocorticoid receptors (GR) in the brain and the size of the adrenal gland were evaluated. Caecum was used for 16S rRNA gene characterization of the gut microbiota. Results show that 5HT depletion produced an increase in food intake and a paradoxical reduction in body weight that were enhanced by CORT. Neuronal 5HT depletion impaired the feedback regulation of CORT levels but had no putative effect on the CORT-induced decrease in hippocampal GR expression and the reduction of the adrenal cortex size. Finally, the composition and structure of the gut microbiota were significantly impacted by the absence of neuronal 5HT, and these alterations were enhanced by chronic CORT treatment. Therefore, we conclude that neuronal 5HT influences the stress-related responses at different levels involving CORT levels regulation and the gut microbiome.


Assuntos
Corticosterona/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/metabolismo , Animais , Encéfalo/metabolismo , Corticosterona/metabolismo , Microbioma Gastrointestinal/fisiologia , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , RNA Ribossômico 16S/metabolismo , Receptores de Glucocorticoides/efeitos dos fármacos , Serotonina/genética , Serotonina/metabolismo , Estresse Psicológico/metabolismo , Triptofano Hidroxilase/genética
15.
Environ Health Perspect ; 128(10): 107005, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33064576

RESUMO

BACKGROUND: Endocrine-disrupting chemicals can interfere with hormonal homeostasis and have adverse effects for both humans and the environment. Their identification is increasingly difficult due to lack of adequate toxicological tests. This difficulty is particularly problematic for cosmetic ingredients, because in vivo testing is now banned completely in the European Union. OBJECTIVES: The aim was to identify candidate preservatives as endocrine disruptors by in silico methods and to confirm endocrine receptors' activities through nuclear receptors in vitro. METHODS: We screened preservatives listed in Annex V in the European Union Regulation on cosmetic products to predict their binding to nuclear receptors using the Endocrine Disruptome and VirtualToxLab™ version 5.8 in silico tools. Five candidate preservatives were further evaluated for androgen receptor (AR), estrogen receptor (ERα), glucocorticoid receptor (GR), and thyroid receptor (TR) agonist and antagonist activities in cell-based luciferase reporter assays in vitro in AR-EcoScreen, hERα-HeLa-9903, MDA-kb2, and GH3.TRE-Luc cell lines. Additionally, assays to test for false positives were used (nonspecific luciferase gene induction and luciferase inhibition). RESULTS: Triclocarban had agonist activity on AR and ERα at 1µM and antagonist activity on GR at 5µM and TR at 1µM. Triclosan showed antagonist effects on AR, ERα, GR at 10µM and TR at 5µM, and bromochlorophene at 1µM (AR and TR) and at 10µM (ERα and GR). AR antagonist activity of chlorophene was observed [inhibitory concentration at 50% (IC50) IC50=2.4µM], as for its substantial ERα agonist at >5µM and TR antagonist activity at 10µM. Climbazole showed AR antagonist (IC50=13.6µM), ERα agonist at >10µM, and TR antagonist activity at 10µM. DISCUSSION: These data support the concerns of regulatory authorities about the endocrine-disrupting potential of preservatives. These data also define the need to further determine their effects on the endocrine system and the need to reassess the risks they pose to human health and the environment. https://doi.org/10.1289/EHP6596.


Assuntos
Disruptores Endócrinos/toxicidade , Receptores Androgênicos/efeitos dos fármacos , Receptores de Estrogênio/efeitos dos fármacos , Receptores de Glucocorticoides/efeitos dos fármacos , Antagonistas de Receptores de Andrógenos , Carbanilidas/toxicidade , Linhagem Celular , Simulação por Computador , Diclorofeno/análogos & derivados , Diclorofeno/toxicidade , Genes Reporter , Humanos , Imidazóis/toxicidade , Triclosan/toxicidade
16.
Sci Rep ; 10(1): 16050, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994491

RESUMO

Independent studies have observed that a paternal history of stress or trauma is associated with his children having a greater likelihood of developing psychopathologies such as anxiety disorders. This father-to-child effect is reproduced in several mouse models of stress, which have been crucial in developing a greater understanding of intergenerational epigenetic inheritance. We previously reported that treatment of C57Bl/6J male breeders with low-dose corticosterone (CORT) for 28 days prior to mating yielded increased anxiety-related behaviours in their male F1 offspring. The present study aimed to determine whether subchronic 7-day CORT treatment of male mice just prior to mating would be sufficient to induce intergenerational modifications of anxiety-related behaviours in offspring. We report that subchronic CORT treatment of male breeders reduced their week-on-week body weight gain and altered NR3C1 and CRH gene expression in the hypothalamus. There were no effects on sperm count and glucocorticoid receptor protein levels within the epididymal tissue of male breeders. Regarding the F1 offspring, screening for anxiety-related behaviours using the elevated-plus maze, light-dark box, and novelty-suppressed feeding test revealed no differences between the offspring of CORT-treated breeders compared to controls. Thus, it is crucial that future studies take into consideration the duration of exposure when assessing the intergenerational impacts of paternal health.


Assuntos
Ansiedade/etiologia , Ansiedade/metabolismo , Herança Paterna/genética , Animais , Transtornos de Ansiedade/etiologia , Transtornos de Ansiedade/genética , Comportamento Animal/efeitos dos fármacos , Corticosterona/metabolismo , Corticosterona/farmacologia , Hormônio Liberador da Corticotropina/efeitos dos fármacos , Hormônio Liberador da Corticotropina/genética , Epigênese Genética/efeitos dos fármacos , Pai , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Glucocorticoides/genética , Estresse Psicológico/metabolismo
17.
Pharmacol Res ; 160: 105189, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32911071

RESUMO

Glucocorticosteroids are the first-line therapy for controlling airway inflammation in asthma. They bind intracellular glucocorticoid receptors to trigger increased expression of anti-inflammatory genes and suppression of pro-inflammatory gene activation in asthmatic airways. In the majority of asthma patients, inhaled glucocorticoids are clinically efficacious, improving lung function and preventing exacerbations. However, 5-10 % of the asthmatic population respond poorly to high dose inhaled and then systemic glucocorticoids. These patients form a category of severe asthma associated with poor quality of life, increased morbidity and mortality, and constitutes a major societal and health care burden. Inadequate therapeutic responses to glucocorticoid treatment is also reported in other inflammatory conditions such as rheumatoid arthritis and inflammatory bowel disease; however, asthma represents the most studied steroid-refractory disease. Several cellular and molecular events underlying glucocorticoid resistance in asthma have been identified involving abnormalities of glucocorticoid receptor signaling pathways. These events have been strongly related to immunological dysregulation, genetic, and environmental factors such as cigarette smoking or respiratory infections. A better understanding of the multiple mechanisms associated with glucocorticoid insensitivity in asthma phenotypes could improve quality of life for people with asthma but would also provide transferrable knowledge for other inflammatory diseases. In this review, we provide an update on the molecular mechanisms behind steroid-refractory asthma. Additionally, we discuss some therapeutic options for treating those asthmatic patients who respond poorly to glucocorticoid therapy.


Assuntos
Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Glucocorticoides/uso terapêutico , Animais , Resistência a Medicamentos , Humanos , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Glucocorticoides/genética
18.
Pharmacol Biochem Behav ; 196: 172971, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32585162

RESUMO

Several attempts have been made to understand the role of cholecalciferol (vitamin D3) in the modulation of neuropsychiatric disorders. Notably, the deficiency of vitamin D3 is considered a pandemic and has been postulated to enhance the risk of major depressive disorder (MDD). Therefore, this study aims to investigate the antidepressant-like effect of cholecalciferol in a mouse model of depression induced by corticosterone, and the possible role of glucocorticoid receptors (GR), NLRP3 and autophagic pathways in this effect. Corticosterone administration (20 mg/kg, p.o., for 21 days) significantly increased the immobility time and grooming latency, as well as reduced the total time spent grooming in mice subjected to the tail suspension test (TST) and splash test (ST), respectively. Importantly, these behavioral alterations were associated with reduced GR immunocontent in the hippocampus of mice. Conversely, the repeated administration of cholecalciferol (2.5 µg/kg, p.o.) in the last 7 days of corticosterone administration was effective to prevent the increased immobility time in the TST and the reduced time spent grooming in the ST, and partially abolished the increase in the grooming latency induced by corticosterone, suggesting its antidepressant-like effect. These behavioral effects were similar to those exerted by fluoxetine (10 mg/kg, p.o.). Moreover, the corticosterone-induced reduction on hippocampal GR immunocontent was not observed in mice treated with cholecalciferol. Additionally, cholecalciferol treatment per se reduced the immunocontent of NLRP3 inflammasome-related proteins ASC, caspase-1, and TXNIP in the hippocampus of mice. No alterations on hippocampal immunocontent of the autophagic-related proteins phospho-mTORC1, beclin-1, and LC3A/B were observed following cholecalciferol treatment and/or corticosterone administration. Collectively, our results provide insights into the effects of cholecalciferol in depression-related behaviors that seem to be related, at least in part, to GR modulation.


Assuntos
Proteína Beclina-1/metabolismo , Colecalciferol/farmacologia , Corticosterona/administração & dosagem , Depressão/prevenção & controle , Hipocampo/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Receptores de Glucocorticoides/efeitos dos fármacos , Animais , Antidepressivos de Segunda Geração/farmacologia , Comportamento Animal/efeitos dos fármacos , Fluoxetina/farmacologia , Hipocampo/metabolismo , Masculino , Camundongos , Receptores de Glucocorticoides/metabolismo
19.
CPT Pharmacometrics Syst Pharmacol ; 9(8): 444-455, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32501650

RESUMO

AZD9567 is a potent and selective nonsteroidal oral glucocorticoid receptor modulator. It is developed as an anti-inflammatory drug with improved safety profile compared with steroids like prednisolone. Throughout the clinical development of AZD9567, dose selection and data interpretation require a method for determining doses with the same anti-inflammatory effect as prednisolone. Equipotent doses of AZD9567 and prednisolone were defined by the same average inhibition of TNFα release, a biomarker of anti-inflammatory effect, measured in a lipopolysaccharide-stimulated whole blood ex vivo assay. Based on pharmacokinetic-pharmacodynamic models, TNFα dose-response relationships for AZD9567 and prednisolone were established. A comparison of the dose-response curves enabled estimation of an equipotency relationship. Specifically, 20 mg prednisolone was estimated to be equipotent to 40 mg AZD9567 (95% confidence interval: 29-54 mg). Static concentration-response analyses showed that the relative potencies for inhibition of TNFα release of AZD9567 and prednisolone were well aligned with several other pro-inflammatory cytokines.


Assuntos
Anti-Inflamatórios/farmacologia , Indazóis/farmacologia , Modelos Biológicos , Prednisolona/farmacologia , Piridinas/farmacologia , Anti-Inflamatórios/administração & dosagem , Relação Dose-Resposta a Droga , Humanos , Indazóis/administração & dosagem , Lipopolissacarídeos , Prednisolona/administração & dosagem , Piridinas/administração & dosagem , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Front Immunol ; 11: 727, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411141

RESUMO

In this study we have assessed the effects of increased cortisol levels during early embryonic development on immune function in zebrafish (Danio rerio) larvae. Fertilized eggs were exposed to either a cortisol-containing, a dexamethasone-containing (to stimulate the glucocorticoid receptor selectively) or a control medium for 6 h post-fertilization (0-6 hpf). First, we measured baseline expression of a number of immune-related genes (socs3a, mpeg1.1, mpeg1.2, and irg1l) 5 days post-fertilization (dpf) in larvae of the AB and TL strain to assess the effectiveness of our exposure procedure and potential strain differences. Cortisol and dexamethasone strongly up-regulated baseline expression of these genes independent of strain. The next series of experiments were therefore carried out in larvae of the AB strain only. We measured neutrophil/macrophage recruitment following tail fin amputation (performed at 3 dpf) and phenotypical changes as well as survival following LPS-induced sepsis (150 µg/ml; 4-5 dpf). Dexamethasone, but not cortisol, exposure at 0-6 hpf enhanced neutrophil recruitment 4 h post tail fin amputation. Cortisol and dexamethasone exposure at 0-6 hpf led to a milder phenotype (e.g., less tail fin damage) and enhanced survival following LPS challenge compared to control exposure. Gene-expression analysis showed accompanying differences in transcript abundance of tlr4bb, cxcr4a, myd88, il1ß, and il10. These data show that early-life exposure to cortisol, which may be considered to be a model or proxy of maternal stress, induces an adaptive response to immune challenges, which seems mediated via the glucocorticoid receptor.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/imunologia , Hidrocortisona/farmacologia , Sistema Imunitário/efeitos dos fármacos , Larva/efeitos dos fármacos , Animais , Dexametasona/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Receptores de Glucocorticoides/efeitos dos fármacos , Sobrevida , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...